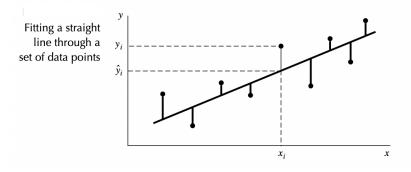
The Method of Least Squares

We use the method of least squares to estimate the parameters of any linear model. In the method of least squares, we fit a straight line to a set of data points. Suppose that we wish to fit the model

$$E(Y) = \beta_0 + \beta_1 x$$

to the set of data points shown in the following figure.



We assume that $Y = \beta_0 + \beta_1 x + \epsilon$, where ϵ possesses some probability distribution with $E(\epsilon) = 0$. If $\hat{\beta}_0$ and $\hat{\beta}_1$ are estimators of the parameters β_0 and β_1 , then $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$ is clearly an estimator of E(Y). We minimize the sum of squares of the vertical deviations from the fitted line. Thus if

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

is the predicted value of the *i*th y value (when $x = x_i$), then the deviation (sometimes called the *error*) of the observed value of y_i from $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is the difference $y_i - \hat{y}_i$, and the sum of squares of deviations to be minimized is

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$
.

The quantity SSE is also called the sum of squares for error. If SSE possesses a minimum, it will occur for values of β_0 and β_1 that satisfy the equations, $\partial SSE/\partial \beta_0 = 0$ and $\partial SSE/\partial \beta_1 = 0$.

The equations $\partial SSE/\partial \beta_0 = 0$ and $\partial SSE/\partial \beta_1 = 0$ are called the *least-squares equations* for estimating the parameters of a line.

Taking the partial derivatives of SSE with respect to $\hat{\beta}_0$ and $\hat{\beta}_0$ and setting them equal to zero, we obtain

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i}y_{i} - \frac{1}{n}\sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}},$$
$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}.$$

It can be shown that the simultaneous solution for the two least-squares equations yields values of $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize SSE.

Least-Squares Estimators for the Simple Linear Regression Model

(1)
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$
, where $S_{xy} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$ and $S_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2$.
(2) $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$.

Question 1. Show that $\hat{\beta}_1$ and $\hat{\beta}_0$ are unbiased estimators for β_0 and β_1 , respectively.

Question 2. Assume that the variance of the error term is σ^2 . that is, $\operatorname{Var}(\epsilon) = \sigma^2$. Compute the variances of the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$. That is, compute $\operatorname{Var}(\hat{\beta}_0)$ and $\operatorname{Var}(\hat{\beta}_1)$.

Question 3. Usually the value of σ^2 is unknown, and we will need to make use of the sample observations to estimate σ^2 . Can you find an unbiased estimator for the parameter σ^2 ?

Question 4.

(1) Use the method of least squares to fit a straight line to the n = 5 data points given in

	Data for Example 11.1
x	у
-2	0
-1	0
0	1
1	1
2	3

Table 11.1	Data f	or Examp	le 11.1
------------	--------	----------	---------

(2) Find the variances of the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$.

(3) Estimate σ^2 .